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Serena Team

Simulation for the Environment

• Environmental problems are modelled by Partial Differential
Equations (PDEs).

• Often, such equations can not be solved exactly.

Reliable and Efficient Numerical Algorithms

• How close is the approximate solution to the exact solution?

• How efficient is the method in terms of computational cost?
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The Poisson problem

We consider the boundary value problem

Find u : Ω 7→ R such that

−∆u = f in Ω,

u = 0 on ∂Ω.

The Laplacian (∆·) operator appears whenever there is diffusion.

Introducing the weak formulation is the starting point of FEM

Find u ∈ H1
0 (Ω) such that

(∇u,∇v)Ω = (f , v)Ω ∀v ∈ H1
0 (Ω).

We do discretization from here.
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Discretization

How to give numerical representation of a 2D continuous domain ?
Mesh : a Finite union of Elements.

A mesh Element Ki

Tpizza

T =
⋃

i Ki

h is the mesh size, it is related to
the number of element Ki in T

h
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Approximation

We want the value of uh at specific points of each triangle
These function evaluations are called degrees of freedom (Dofs),
they depend on p : degree of polynomial approximation.

For p = 1, we have 3 Dofs on each element

For p = 2, we have 6 Dofs on each element

For p = 3, we have 10 Dofs on each element
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Approximation

We want the value of uh at specific points of each triangle
These function evaluations are called degrees of freedom (Dofs),
they depend on p : degree of polynomial approximation.

For p = 1, we have 3 Dofs on each element

For p = 2, we have 6 Dofs on each element

For p = 3, we have 10 Dofs on each element

Smaller h : more elements
Higher p : more Dofs per element
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Finite Element space

Chosing h and p allows us to build a discrete space V p
h where the basis

functions are piecewise polynomials of degree p.
We look for uh in V p

h and not in H1
0 (Ω).

V p
h = Span(ϕh,0, ..., ϕh,n). We are looking for c0, c1, ..., cn.
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The Finite Element approach

What is commonly done

Weak
formulation

Finite Element
Space

Linear
system

Choice of h

Choice of p

Choice

of a basis

We have to solve a linear system for c0, c1, ..., cn,

AUp
h = F .

The size of A depends on h and p. The linear system has to be solved
independently.
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High order FEM

How to chose h and p ?

Exponential convergence of the hp FEM

∥∇(u − uph )∥ ≤ Chmin{p,s−1} if u ∈ Hs(Ω), s ≥ 1.
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High order FEM

How to chose h and p ?

Exponential convergence of the hp FEM

∥∇(u − uph )∥ ≤ Chmin{p,s−1} if u ∈ Hs(Ω), s ≥ 1.

Challenges

• The matrix becomes less sparse for high order p.

• The matrix becomes more ill-conditioned for high order p.

The system AUp
h = F is hard to solve for high p

Iterative solvers explode in terms of iterations
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Iterative solvers

Let uJ be the exact solution of AuJ = F and uiJ the iterates of the method.

Starting from u0J

Until reaching unJ
With enJ = ∥unJ − uJ∥ ≤ ϵ

n iterations uJ

u0J

e0J = ∥u0J − uJ∥

Any iterative solver can be seen as a strategy to decrease the algebraic
error
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Algebraic convergence of CG

Conjugate gradient for the linear system corresponding to the Poisson
equation

Tolerance: ϵ = 10−5

From 30 iterations with p = 1 to 180 iterations with p = 3.

CG is not p-robust
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The Multigrid Method

A multigrid FEM solver

Ingredients for the solver:

• A hierarchy of meshes

• Domain decomposition

• Orthogonal decomposition of the error

Leading to the following properties:

• The method is parallel by design

• The solver is memory efficient

• The solver is p-robust

Where h and p are arbitrary parameters
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How to decrease the algebraic error ?

The algebraic error is defined by e iJ = ∥∇(uiJ − uJ)∥, with the H1 semi
norm.

How to decrease this quantity ?

We introduce ρiJ,alg a correction to go from uiJ to ui+1
J

In the multigrid setting, ρiJ,alg is computed by going through a hierarchy of
meshes.

ρiJ,alg =
J∑

j=0

ρij

Where ρij are the level-wise corrections.
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Hierarchy of meshes

Multigrid : Multiple Meshes

We work with an initial mesh T0 and its refinements Tj .

ρiJ,alg = ρi0 + ρi1 + ρi2 + ρi3 + ...+ ρiJ

The hierarchy of meshes does not have to be uniform

Low-cost information acquisition on coarser meshes
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How to compute the correction

1. Coarse solve on T0 for ρi0
(∇ρi0,∇v0) = (f , v0)− (∇uiJ ,∇v0) ∀v ∈ P0 ∩ H1

0 (T0)

2. Level Solve for ρij
For T1 to TJ :

• Decompose Tj into patches

Local solve for ρij ,a

We obtain ρij =
∑
a

ρij ,a, the level-wise correction

• Line Search : ρij −→ λi
j ,

uij = uij−1 + λi
jρj

End For
3. Update of the solution: ui+1

J = uiJ
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Domain decomposition

Why are we doing domain decomposition?

We need to compute ρij on each mesh Tj , to get the correction ρiJ,alg.

We want to go from a single global problem to multiple local problems.

The reasons :

• More memory efficient

• More time efficient

• Parallelizable!

It is possible from theory using the so-called Partition of unity .
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But... What is a patch ?

Example of a patch at a mesh level j .

a

ωa

Tj

a

ωa

a is the vertex patch
ωa is the patch subdomain
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Global solve too costly

Solving for ρij ?

∀v ∈ V p
j , (∇ρij ,∇v)Tj = (f , v)Tj − (∇uij−1 ,∇v)Tj

Unknown Known

Kjxj = F 1
j − F 2

j

Choice of basis

The vector xj contains the coefficients of ρij in the discrete space.

The matrix Kj is assembled on the mesh Tj ... It is global!
Solving this linear system is really costly, especially for the mesh TJ .
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Patch problems

We have the patch decomposition ρij =
∑
a

ρij ,a.

In order to get ρij ,a, we solve :

∀v ∈ V p
a , (∇ρij ,a ,∇v)ωa= (f , v)ωa − (∇uij−1 ,∇v)ωa

Kaxa = F 1
a − F 2

a

Choise of basis

Unknown Known

The vector xa contains the coefficients of ρia in the discrete space.

The matrix Ka is assembled on the mesh ωa... It is local!

This results in
• size(Ka) << size(Kj)
• The computation of ρij ,acan be parallelized
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Line Search

How can we further improve the convergence ?

At each level ρij can be seen as the descent direction.

In order to get closer to uJ at each level step j , we can introduce λi
j

solution of:

λi
j := argminλ∈R ∥∇(uJ − (uJ,j−1+λρij))∥2.

λi
j =

(f , ρij)− (∇uJ,j−1,∇ρij)

∥∇ρij∥2

Minimization of λ 7→ f (λ) f ′(λ) = 0

We update on level j :

uj = uij−1+λi
jρ

i
j
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The Incredible V-cycle

TJ
T3
T2
T1
T0

u0J

u10

u1J

First iteration

u2J

u20

We have performed nJ correction on u0J

When the desired tolerance is reached, the solver stops.

We obtain unJ the final approximation of uJ
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The Incredible V-cycle

TJ
T3
T2
T1
T0

u0J

u10

u1J

First iteration

On T0 : global coarse solve for ρ10

On T1 : Local patch solves to construct ρ11 =
∑

a ρ
1
1,a

On TJ : Local patch solves to construct ρ1J =
∑

a ρ
1
J,a

If e1J ≤ ϵ, we continue.

u2J

u20

Second iteration

On T0 : global coarse solve for ρ10

On T1 : Local patch solves to construct ρ21 =
∑

a ρ
2
1,a

On TJ : Local patch solves to construct ρ2J =
∑

a ρ
2
J,a

If e1J ≤ ϵ, we continue.

We have performed nJ correction on u0J

When the desired tolerance is reached, the solver stops.

We obtain unJ the final approximation of uJ
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The Incredible V-cycle

TJ
T3
T2
T1
T0

u0J

u10

u1J

Second iteration

u2J

u20

On T0 : global coarse solve for ρ20

On T1 : Local patch solves to construct ρ21 =
∑

a ρ
2
1,a

On TJ : Local patch solves to construct ρ2J =
∑

a ρ
2
J,a

If e2J ≤ ϵ, we still continue...

We have performed nJ correction on u0J

When the desired tolerance is reached, the solver stops.

We obtain unJ the final approximation of uJ
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The Incredible V-cycle

TJ
T3
T2
T1
T0

u0J

u10

u1J u2J

u20

After n iterations

u30 un0

unJ

We have performed nJ correction on u0J

When the desired tolerance is reached, the solver stops.

We obtain unJ the final approximation of uJ
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Properties

We have the following orthogonal decomposition :∥∥∥∇(
uJ − ui+1

J

)∥∥∥2 = ∥∥∇ (
uJ − uiJ

)∥∥2 − J∑
j=0

(
λi
j

∥∥∇ρij
∥∥)2

The error at iteration i + 1 is the error at iteration i minus a positive and
computable quantity

And the p−robustness property

∥∇(uJ − ui+1
J )∥ ≤ α∥∇

(
uJ − uiJ

)
∥

The contraction factor is given by α ∈]0, 1[. It doesn’t depend on p
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p-robustness

Multigrid : 13 iterations and CG : 30 iterations

Tolerance: ϵ = 10−5
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p-robustness

Multigrid : 13 iterations and CG : 182 iterations

Tolerance: ϵ = 10−5
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p-robustness

Multigrild : 11 iterations and CG : + 300 iterations

Tolerance: ϵ = 10−5
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p-robustness

Multrigrid : 5 iterations and CG : + 500 iterations

Tolerance: ϵ = 10−5
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Future work

While keeping the p-robustness property

• Localize even more (smaller problem than patch)

• Build a solver for other type of Finite Elements Methods

• Build a solver for other problems
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Conclusion

Thank you for your attention!
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