The Poisson problem: How can a simple equation be so

complicated to solve efficiently ?
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Serena Team

Simulation for the Environment

® Environmental problems are modelled by Partial Differential
Equations (PDEs).

e Often, such equations can not be solved exactly.
Reliable and Efficient Numerical Algorithms

® How close is the approximate solution to the exact solution?

® How efficient is the method in terms of computational cost?
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The Poisson problem

We consider the boundary value problem

Find v : Q — R such that
—Au=1f inQ,
u=0 on 99.

The Laplacian (A-) operator appears whenever there is diffusion.
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The Poisson problem

We consider the boundary value problem

Find v : Q — R such that

—Au=1f inQ,
u=0 on 99.

The Laplacian (A-) operator appears whenever there is diffusion.

Introducing the weak formulation is the starting point of FEM

Find u € H}(R) such that

(Vu,Vv)g = (f,v)a Vv e H}(Q).

We do discretization from here.
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How to give numerical representation of a 2D continuous domain ?
Mesh : a Finite union of Elements.
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How to give numerical representation of a 2D continuous domain ?
Mesh : a Finite union of Elements.

~_ -
A mesh Element K;

h is the mesh size, it is related to
the number of element K; in T
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We want the value of uj, at specific points of each triangle
These function evaluations are called degrees of freedom (Dofs),
they depend on p : degree of polynomial approximation.
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Approximation

We want the value of up, at specific points of each triangle

These function evaluations are called degrees of freedom (Dofs),
they depend on p : degree of polynomial approximation.

For p = 1, we have 3 Dofs on each element
For p = 2, we have 6 Dofs on each element
For p = 3, we have 10 Dofs on each element

Smaller h : more elements
Higher p : more Dofs per element
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Finite Element space

Chosing h and p allows us to build a discrete space V// where the basis
functions are piecewise polynomials of degree p.

We look for uj, in V[ and not in H}(S).
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VP = Span(ého, ... &n.n). We are looking for cp. c1, ..., ¢,

Clément MARADEI (Serena Team)

Inria Paris

April 9th 8/31



The Finite Element approach

What is commonly done

Weak Choice of h |Finite Element Choice Linear
formulation |  Choice of p Space of a basis system

We have to solve a linear system for ¢y, c1, ..., ¢n,
AUP = F.

The size of A depends on h and p. The linear system has to be solved
independently.
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High order FEM

How to chose h and p ?

Exponential convergence of the hp FEM

V(u— uP)|| < Chmintps=1}if 4y € HS(Q ,s > 1.
h
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High order FEM

How to chose h and p ?
Exponential convergence of the hp FEM

IV(u— uP)|| < ChmintPs=1Yif 4 € H5(Q),s > 1.
Challenges

® The matrix becomes less sparse for high order p.

® The matrix becomes more ill-conditioned for high order p.

The system AUP = F is hard to solve for high p

Iterative solvers explode in terms of iterations
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Iterative solvers

Let u, be the exact solution of Au; = F and uj the iterates of the method.

Starting from 1

n iterations

Until reaching v
With e = [u] — uyl| < e

Any iterative solver can be seen as a strategy to decrease the algebraic
error
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Iterative solvers

Let u, be the exact solution of Au; = F and uj the iterates of the method.

Starting from 1 o

n iterations
Al
eJ-.i— ”UJ —__. uy

Until reaching v
With e = [u] — uyl| < e

Any iterative solver can be seen as a strategy to decrease the algebraic
error
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Algebraic convergence of CG

Conjugate gradient for the linear system corresponding to the Poisson

equation
Algebraic convergence Algebraic convergence
10* 10"
p=1 p=3
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Iteration number Iteration number

Tolerance: € = 107°
From 30 iterations with p = 1 to 180 iterations with p = 3.

CG is not p-robust
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The Multigrid Method

A multigrid FEM solver

Ingredients for the solver:

® A hierarchy of meshes
® Domain decomposition
¢ Orthogonal decomposition of the error

Leading to the following properties:

® The method is parallel by design
® The solver is memory efficient
® The solver is p-robust

Where h and p are arbitrary parameters
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How to decrease the algebraic error 7

The algebraic error is defined by e/, = ||V (u/, — uy)
norm.

, with the H! semi

How to decrease this quantity ?

We introduce pg a correction to go from uj to v/t

alg J

In the multigrid setting, plalg is computed by going through a hierarchy of
meshes.

J
i - i
pJ,alg - pj
Jj=0

Where pJ’. are the level-wise corrections.
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Hierarchy of meshes

Multigrid : Multiple Meshes

We work with an initial mesh 7y and its refinements 7;.

To

T

Tz

Ts

T

TN

The hierarchy of meshes does not have to be uniform

Low-cost information acquisition on coarser meshes

Pratg = Po+ PL+ Po+ Py + -+ 1)
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How to compute the correction

1. Coarse solve on Ty for ,06
(Vph, V) = (f,vo) — (Vu, V) Vv e PO HY(To)

2. Level Solve for pj’:
For 71 to Ty :

e Decompose 7; into patches

i
Local solve for 05 a

We obtain pj’: = Z ,oj’:,a, the level-wise correction

a

e Line Search : pj’: — 2\
up=ui_j + \pj

End For .
3. Update of the solution: u’J'Hl =u
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Domain decomposition

Why are we doing domain decomposition?
We need to compute p} on each mesh 7}, to get the correction pg,alg.
We want to go from a single global problem to multiple local problems.
The reasons :

® More memory efficient

® More time efficient

® Parallelizable!

It is possible from theory using the so-called Partition of unity.
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But... What is a patch ?

Example of a patch at a mesh level j.

T;

a is the vertex patch
w, is the patch subdomain
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Global solve too costly

Solving for pj’: ?

Unknown Known
Vv € VJ , (ij’- ,Vv)7; = (f, v)7j — (VUJ’;1 ,Vv)7;
Choice of basis [ J J
Ky = F - F?

The vector x; contains the coefficients of pj"- in the discrete space.
The matrix Kj is assembled on the mesh 7;... It is global!

Solving this linear system is really costly, especially for the mesh 7.
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Patch problems

We have the patch decomposition pJ"- = ij’.-"a.
a

i )
In order to get P} 20 We solve :

Unknown Known
— .
VV S Vapv (ijl,a 7VV)Wa: (f7 V)Wa - (vujl'fl ’Vv)wa
Choise of basis { k {
Kixs = Fal — F32

The vector x, contains the coefficients of o', in the discrete space.
The matrix K, is assembled on the mesh w,... It is local!
This results in

* size(K,) << size(Kj)

¢ The computation of p; ,can be parallelized
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How can we further improve the convergence ?

At each level pj"- can be seen as the descent direction.

In order to get closer to 1, at each level step j, we can introduce /\J’:
solution of:

)\J". = argminyeg ||V(uy — (UJJ—1+)\PJ':))||2-

Minimization of A — f(A) | f/(A\) =0

N (F, ) = (Vusj-1, V)
’ IVeil2

We update on level j :

— Y
uj = uj_l—i-)\Jpj
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© V-cycle

Smoothing of the error components
p-Robustness

Algebraic convergence
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The Incredible V-cycle

First iteration

A e
T oo B B
To oo B
Tq o B e



The Incredible V-cycle

First iteration

/—/%
U0 U1
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eOn 7y : global coarse solve for pj

eOn 77 : Local patch solves to construct p = > p1,

oOn 7} : Local patch solves to construct p} =Y. p}

If e} < ¢, we continue.



The Incredible V-cycle

Second iteration

0 17 2D
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The Incredible V-cycle

Second iteration

uj uj uj

T] ...... ‘ .......................... @ @ e
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’71 ......................... " ......................................................................
’76 ..................... @ . ..........................................................................

1 2

o o

eOn 7y : global coarse solve for p3

eOn 77 : Local patch solves to construct pi = > p7 ,

oOn 7 : Local patch solves to construct p5 =, p5 ,

If eJ < ¢, we still continue..



The Incredible V-cycle
After n iterations \
0 1 2

We have performed nJ correction on ug
When the desired tolerance is reached, the solver stops.

We obtain u] the final approximation of uy
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We have the following orthogonal decomposition :

J
. 2 . . .
¥ (=) [ = 19 (o =) = 30 4 9)°
Jj=0
The error at iteration i/ + 1 is the error at iteration i minus a positive and

computable quantity
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We have the following orthogonal decomposition :

[ (s = )| = 19 (s = )P = 32 (3 9l

Jj=0
The error at iteration i/ + 1 is the error at iteration i minus a positive and
computable quantity

And the p—robustness property
IV (uy = u§ DI < allV (uy — ) |

The contraction factor is given by « €]0, 1[. It doesn’t depend on p
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p-robustness

Algebraic convergence

. Algebraic convergence 10
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Iteration number Tteration number

Multigrid : 13 iterations and CG : 30 iterations

Tolerance: e = 1072
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p-robustness

Algebraic convergence Algebraic convergence
10° 10!
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Iteration number Iteration number

Multigrid : 13 iterations and CG : 182 iterations

Tolerance: e = 1072
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p-robustness

Algebraic convergence Algebraic convergence
10 10!
p=5 p=5
102 100
— -
S 2
B 5o
@ 107 @ 10
£ g
-
5
8 10 = 102
E B
10 102
-4
10 10 s 0000000000000 0000000000000
SRAYRBRES5INASAEREARINRRARNRRE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iteration number Tteration number

Multigrild : 11 iterations and CG : + 300 iterations

Tolerance: e = 1072
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p-robustness

Algebraic convergence Algebraic convergence
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Iteration number Iteration number

Multrigrid : 5 iterations and CG : + 500 iterations

Tolerance: e = 1072
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While keeping the p-robustness property

¢ Localize even more (smaller problem than patch)
® Build a solver for other type of Finite Elements Methods

® Build a solver for other problems
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Conclusion

Thank you for your attention!
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